Allergy and Autoimmunity Caused by Metals: A Unifying Concept

Vera Stejskal
Department of Immunology, University of Stockholm, Stockholm, Sweden

Introduction

Allergy and autoimmunity are caused by an abnormal immune response and have the same clinical outcomes, including local and systemic inflammation resembling autoimmune/inflammatory syndrome induced by adjuvants (ASIA) (Shoenfeld and Agmon-Levin, 2011; Perricone et al., 2013).

This chapter will give an overview of the literature on metal-induced pathologies, such as delayed-type hypersensitivity and autoimmunity. Because of the vast amount of information available on this subject, the focus of this review will be mainly on specific T cell reactivity to mercury, aluminum, nickel, and gold, all of which are known to induce immunotoxic effects in human subjects. Mercury, as a constituent of thimerosal, and aluminum are both used in vaccines.

The immunological effects of metals include immunomodulation, allergy, and autoimmunity. Metals may act as immunosuppressants or as immune adjuvants. One example of immunomodulation is the ability of metals to modify cytokine production in vitro and in vivo.

In the body, metal ions may firmly bind to cells and proteins. This binding results in the modification of autologous epitopes (i.e. haptenization). In susceptible individuals, T cells falsely recognize the modified proteins as foreign and start an autoimmune attack (Griem and Gleichmann, 1995; Schiraldi and Monestier, 2009; Wang and Dai, 2013). In experimental animals, the recognition of metal haptens is dependent on the genetic makeup: some rodent strains are resistant, while others are susceptible to the induction of autoimmunity by metals (Griem and Gleichmann, 1995; Bigazzi, 1999; Fournié et al., 2001; Schiraldi and Monestier, 2009). Clusters of autoimmunity have been reported in areas of increased exposure to heavy metals (Ingalls, 1986). It has been found that mercury, nickel, cadmium, lead, aluminum, and arsenic can exert immunotoxic effects through epigenetic mechanisms, such as DNA methylation and histone modification (Greer and McCombe, 2012).

In humans, the expression of autoimmune diseases can differ between genetically identical twins. This suggests that, in addition to genetics, environmental factors are involved in the disease process. The genes controlling susceptibility to metals are the subject of intensive studies (Wang et al., 2012; Woods et al., 2013), but no clear conclusion has yet been reached. Genes that might predispose for toxic effects of metals are, for example, those involved in detoxification and synthesis of glutathione. In the case of metal allergy, only a few genetic studies have been performed, such as those on workers occupationally sensitized to beryllium (Wang and Dai, 2013).

Delayed-type hypersensitivity

The type of allergy induced by metals in humans is cellular-type hypersensitivity, also called type IV delayed-type hypersensitivity. “Delayed” refers to...
the fact the first symptoms appear 24–48 hours after initial exposure to the allergen, which makes causal connection difficult. Metals such as mercury are low-molecular haptons and only rarely produce antibodies (Wylie et al., 1992). Hence, immunological responses induced by metals are mostly T cell-mediated.

The gold standard for diagnosis of delayed-type hypersensitivity is patch testing. In patch test, the suspected metal allergens are applied under occlusion on the skin of the back. A dermatologist evaluates the reaction after 2–3 days. Another diagnostic approach, one that is becoming more widespread, is the lymphocyte transformation test (LTT), which allows an objective evaluation of memory lymphocytes present in the blood of patients. In this test, blood lymphocytes are cultivated with metals or other allergens for 5 days in vitro, after which the number of proliferating lymphocytes is determined by radioisotope incorporation.

A standardized and validated form of LTT is LTT-MELISA (Memory Lymphocyte Stimulation Assay) (Stejskal et al., 1994, 2006; Prochazkova et al., 2004; Valentine-Thon et al., 2007). In addition to objective radioisotope evaluation, morphological confirmation of the presence of activated lymphocytes (lymphoblasts) is also performed (Stejskal et al., 2006).

The allergic and autoimmune effects of metals

Exposure to metals can be external (e.g. through pollution, occupation, cosmetics, and handling of metallic items) or internal (e.g. through foods, dental restorations, orthopaedic implants, and vaccines). Cigarette smoke contains many metals, such as mercury, cadmium, lead, arsenic, and nickel, and increasing evidence is linking it to autoimmune disorders (Arnson et al., 2010).

Mercury

It has been known for decades that exposure to mercury through skin-lightening ointments will, in some individuals, lead to the development of serious side effects, such as kidney disease (Turk and Baker, 1968; Barr et al., 1972; Kibukamusoke et al., 1974), as well as neurological complications such as peripheral polyneuropathy (Kern et al., 1991; Adawe and Oberg, 2013). In a more recent paper, skin-lightening creams induced neuropsychological problems and glomerulonephritis in a patient with juvenile diabetes (Pelcova et al., 2002). After mercury chelation, the symptoms disappeared, confirming a causal relationship. Mercury-containing ointments are still being used in some countries (Weldon et al., 2000).

The main source of inorganic mercury in the general population is mercury released from dental amalgam fillings (Clarkson et al., 1988). Dental amalgam consists of 50% mercury, 22–32% silver, 14% tin, 8% copper, and other trace metals (Ferracane, 2001). Since mercury functions as both adjuvant and allergen, it has no safe dose level (IPCS, 1991). The most common source of methyl mercury is ingested polluted fish. Methyl mercury can also be formed through the conversion of metallic mercury by oral and gastrointestinal bacteria, and vice versa (Liang and Brooks, 1995).

Thimerosal and phenyl mercury are organic mercury compounds used as antiseptics and preservatives in eye drops and vaccines (Rietschel and Fowler, 2001). Like methyl mercury, these organic mercury compounds are decomposed to inorganic mercury in the body (WHO, 1990; Havarinasab and Hultman, 2005).

Inorganic mercury, thimerosal, and nickel are the most common allergens in children, a fact that is not widely recognized. Of 1094 children with skin disease, 10% reacted to thimerosal (ethylmercury thiosalicylate) and 6% to mercury (Seidenari et al., 2005) in patch test. A review of PubMed articles investigating allergens in at least 100 children from the years 1966–2010 showed that among the top five allergens across 49 studies, three were metals: nickel, gold, and thimerosal (Bonitis et al., 2011).

Sensitization to thimerosal can be demonstrated in vitro by LTT-MELISA, as shown previously (Stejskal et al., 1994, 1999; Stejskal, 2014). In a large study of over 3000 patients, tested by LTT-MELISA in three different laboratories, the prevalence of thimerosal-specific lymphocyte responses was around 7% (Stejskal et al., 1999). As shown in Table 5.1, LTT-MELISA can identify thimerosal-specific responses in patients who have experienced side effects after exposure to thimerosal-containing products.

According to one paper (Westphal et al., 2000), thimerosal sensitization depends on homozygous gene deletion of the glutathione S-transferases, indicating the role of genetics in detoxification capacity.

It is important to note that memory lymphocytes induced by various mercury compounds do not crossreact, as shown by Italian dermatologists (Tosti et al., 1989; Santucci et al., 1998) and by
Table 5.1 Lymphocyte responses in LTT-MELISA to thimerosal and other metals in patients with side effects following exposure to thimerosal-containing products

<table>
<thead>
<tr>
<th>Patient number</th>
<th>Sex</th>
<th>Age</th>
<th>Health status</th>
<th>Thimerosal exposure</th>
<th>Symptoms after exposure</th>
<th>Positive thimerosal responses (SI)</th>
<th>Other positive responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>45</td>
<td>CFS</td>
<td>Hepatitis-B vaccine, gamma globulin</td>
<td>Flu-like symptoms after hepatitis B vaccine</td>
<td>20</td>
<td>Cadmium, palladium, phenyl mercury, tin</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>52</td>
<td>Skin/eye irritation, fatigue</td>
<td>Anti-D globulin × 3, eye drops, TB vaccine, patch test</td>
<td>Worsening of symptoms after thimerosal patch testing</td>
<td>19</td>
<td>Ethyl mercury, inorganic mercury, methyl mercury</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>58</td>
<td>CFS</td>
<td>Vaccines</td>
<td>Flu-like symptoms post-vaccination</td>
<td>5.9</td>
<td>Inorganic mercury, phenyl mercury</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>53</td>
<td>CFS, oral lichen planus</td>
<td>Gamma globulin × 8, cosmetics</td>
<td>Eyelid eczema and edema from cosmetics</td>
<td>41</td>
<td>None</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>48</td>
<td>CFS</td>
<td>Vaccines</td>
<td>Not known</td>
<td>7.3</td>
<td>None</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>18</td>
<td>Heart problems</td>
<td>Vaccines</td>
<td>Not known</td>
<td>16.3</td>
<td>Cadmium, copper, inorganic mercury, lead, methyl mercury, phenyl mercury</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>57</td>
<td>CFS</td>
<td>Gamma globulin, TB vaccine</td>
<td>Not known</td>
<td>65</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>45</td>
<td>CFS</td>
<td>Vaccines</td>
<td>Not known</td>
<td>12.4</td>
<td>Ethyl mercury, gold, inorganic mercury, lead, methyl mercury, nickel, phenyl mercury, tin</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>47</td>
<td>CFS</td>
<td>Gamma globulin, eye drops</td>
<td>Not known</td>
<td>4.4</td>
<td>Cadmium, ethyl mercury, gold, inorganic mercury, lead, methyl mercury, nickel, palladium, phenyl mercury, tin</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>53</td>
<td>CFS</td>
<td>Gamma globulin, eye drops</td>
<td>Not known</td>
<td>4.4</td>
<td>Cadmium, ethyl mercury, methyl mercury, nickel</td>
</tr>
</tbody>
</table>

Lymphocytes were isolated from human blood and cultivated for 5 days with a wide range of metal salts, including thimerosal, inorganic mercury, methyl mercury, phenyl mercury, gold, palladium, tin, lead, nickel, and cadmium (Stejskal et al., 1999). Metal-specific responses were measured by 3H thymidine uptake. Lymphocyte responses are shown as stimulation index (SI) = counts per minute (cpm) in metal-treated cultures divided by counts per minute in control cultures. SI ≥ 3 is a positive response and SI ≥ 10 is a strongly positive response (shown in bold).

LTT-MELISA testing (Stejskal et al., 1994). However, sensitization to several mercury compounds, as well as to other metals, is frequently observed.

Clinical observations accumulated over many years indicate that exposure to mercury can induce multiple sclerosis and other autoimmune diseases. As early as 1966, Baasch suggested that multiple sclerosis is caused by a neuroallergic reaction to mercury released from amalgam fillings, comparing it to an adult form of acrodynia (pink disease) (Baasch, 1966). Acrodynia occurred in some children who were treated with a mercury-containing teething powder (Warkany and Hubbard, 1953). The same conclusion – that dental and environmental exposure to mercury could be one of the factors leading to multiple sclerosis – was also reached by Ingalls (1983, 1986).
Recent research supports these early clinical observations. Prochazkova et al. (2004), at Charles University in Prague, studied the impact of amalgam replacement on health in patients with various autoimmune diseases who showed increased mercury-specific responses in vitro. After the replacement of mercury-containing amalgam with metal-free materials, 71% of the patients showed health improvement by 6 months later. In the group of patients that did not undergo dental treatment, no health improvement occurred.

Other studies seemingly contradict the hypothesis that mercury might be one of the causes of neurodegenerative diseases. Saxe et al. (1999) measured the concentration of mercury in the brains of Alzheimer’s patients and controls. Since there were no statistically significant differences in brain mercury levels between the two groups, the authors concluded that mercury does not appear to be a neurotoxic factor in the pathogenesis of Alzheimer’s disease. Similar findings were published by Clausen (1993), who studied mercury levels in the brains of patients with multiple sclerosis. The conclusions drawn from these studies may be questioned. In mercury-sensitized patients, even mercury concentrations within the normal range might provoke neuroallergic reactions in the brain.

The protocol of identification of metal hypersensitivity and removal of sensitizing metals has been successfully used in patients with fibromyalgia (Stejskal et al., 2013) and autoimmune thyroid diseases (Sterzl et al., 1999, 2006; Hybenova et al., 2010). In the latter group, the removal of mercury-containing amalgam not only downregulated mercury-specific responses in vitro, but also resulted in a significant decrease of antithyroid peroxidase and antithyreoglobulin antibodies compared to levels prior to treatment.

Another disease of autoimmune origin is oral lichen planus. In one study, 72% of patients with oral lichen planus showed a positive response to mercury in vitro (Stejskal et al., 1996). In addition to oral symptoms, the patients suffered from arthralgia, myalgia, eczema, and chronic illness. After removal of amalgams, both local and systemic symptoms significantly decreased.

Finally, a study was recently published which showed successful treatment of orofacial granulomatosis on removal of amalgam in patients with a hypersensitivity to mercury (Tomka et al., 2011).

Gold
The autoimmune potential of gold compounds has been known for many years. Serious side effects, such as nephropathy, were observed in some patients after the use of colloidal gold as a treatment for rheumatoid arthritis (Palosuo et al., 1976), and the possible mechanisms behind these side effects have been discussed (Stejskal et al., 1999). According to some studies, gold allergy is more common in patients who have developed autoimmune side effects after treatment with gold, indicating the existence of both allergy and autoimmunity induced by gold in the same patient (Möller et al., 1996). It is important to emphasize that, as with other metals, gold allergy is not only expressed on the mucosa or skin, but also inside the body. For example, the rate of restenosis after implantation of gold-stented plates is high in patients suffering from gold allergy (Ekqvist et al., 2007).

Nickel
Nickel is the most common sensitizer, and also the most studied (Thyssen and Menné, 2010). In Swedish patients with chronic fatigue syndrome (CFS), the frequency of nickel allergy was around 40%, as diagnosed by LTT-MELISA (Stejskal et al., 1999). The coexistence of both allergic and autoimmune symptoms, induced by nickel, has been published, suggesting the autoimmune potential of nickel compounds (Kosboth et al., 2007; Niedziela and Bluvshten-Walker, 2012). Direct evidence of nickel-induced autoimmunity was observed in susceptible rats that developed scleroderma-related autoantibodies and cutaneous sclerosis after exposure to nickel (Al-Mogairen et al., 2010). Since nickel can also induce Toll-like receptors (TLRs) (Schmidt et al., 2010), the autoimmune potential of this metal is plausible and should be studied in the future.

Aluminum
Aluminum is a ubiquitous metal, widely occurring in the environment and used in many everyday objects, foods, and pharmaceuticals. Aluminum is a well-known adjuvant in vaccines, despite its neurotoxic properties (Shaw and Tomljenovic, 2013). As described by Shoenfeld et al. (Shoenfeld and Agmon-Levin, 2011; Perricone et al., 2013), adjuvants can promote ASIA in susceptible patients. Allergy to aluminum is rare, but has been described. Delayed-type hypersensitivity to aluminum and itching nodules were found in children exposed to aluminum-containing vaccines (Bergfors et al., 2003). Exley et al. (2009) described a patient who developed CFS after multiple vaccinations with aluminum-containing vaccines.
vaccines. A muscle biopsy confirmed the presence of aluminum-containing macrophages; the aluminum content in the patient’s urine was also increased. Macrophagic myofasciitis (MMF) has been described by Gherardi and Authier (2012) as a systemic disease whose main histopathological feature is a granulomatous lesion comprising aluminum-loaded macrophages at the site of previous intramuscular vaccination. Typical clinical manifestations in MMF patients include myalgias, arthralgias, marked asthenia, weakness, cognitive dysfunction, and CFS. In addition, 15–20% of MMF patients may also have coexistent autoimmune diseases, the most frequent of which are multiple sclerosis, Hashimoto’s thyroiditis, and diffuse autoimmune neuromuscular diseases, such as dermatomyositis, necrotizing autoimmune myopathy, myasthenia gravis, and inclusion body myositis (Authier et al., 2001; Guis et al., 2002).

Conclusions
Scientific literature and clinical experience show that metals play a key role in the development of autoimmune diseases. Whether metals induce autoimmunity or whether they aggravate existing disease, the removal of sensitizing metals upon identification of metal triggers has improved patient health.

Larger randomized studies in susceptible individuals, selected on the basis of genotypic or phenotypic biomarkers, should be pursued in the future. As suggested by Weiss and Liff (1983), studies of phenotypic markers may be suitable for the elucidation of causal pathways and identification of specific risk factors. The limited power of epidemiological studies to detect minor susceptible populations, such as those susceptible to mercury, has been discussed by Wallach et al. (2003). The benefits of this approach for patients can be monitored not only by the decrease in antibody titers (Sterzl et al., 1999), but also by downregulation of metal-specific lymphocyte responses in vitro (Stejskal et al., 1999, 2006, 2013; Yaqob et al., 2006).

Finally, the identification of sensitized T cells in human blood can be made use of in future studies of vaccine-induced side effects. Elucidation of the possible mechanisms will contribute not only to successful treatment of affected individuals but also to the development of safer vaccines. The use of human blood lymphocytes in vaccine research has recently been suggested (Brookes et al., 2014).

References

Sterzl, I., Procházková, J., Hrdá, P., et al. (2006). Removal of dental amalgam decreases anti-TPO and anti-Tg autoantibodies in patients with...

